ICT Tool: - 'C' Language Program for Matrix Multiplication

Pradip P. Kolhe Assistant Professor (Computer Sci.), ARIS Cell, Dr. PDKV, Akola, India.

Prakash R. Kolhe Assistant Professor (Computer Sci.), AKMU,Dr BSKKV, Dapoli, India.

Sanjay C. Gawande Assistant Professor, College of Agriculture, Dr. PDKV, Akola, India.

Abstract – In mathematics to solve matrix problems ,manually it is very difficult task to get the required output need to perform. Multiplication of two matrixes is only possible if first matrix has size m X n and other matrix has size n x r. Where m, n and r are any positive integer.

In the era of Information Communication Technology (ICT). The ICT programming technique, it is easier task. One of the very popular programs in C programming is Matrix Multiplication. Multiplications mean successive addition. This paper discuss Matrix Multiplication in C language, source code and methods with outputs. The source codes of program for Matrix Multiplication in C programming are to be compiled. Running them on Turbo C or available version and other platforms might require a few modifications to the code. You probably know how to multiply two matrices.

Index Terms - Matrix, ICT, C lang., Turbo c, Positive Integer.

1. INTRODUCTION

Introduction to Matrix Multiplication:

One of the very popular programs in C programming is Matrix Multiplication. Multiplications mean successive addition. The manual method of multiplication procedure involves a large number of calculations especially when it comes to higher order of matrices, whereas a program in C can carry out the operations with short, simple and understandable codes.

Multiplication of two matrixes is defined as

$$[AB]_{i,j} = \sum_{s=1}^{n} A_{i,s} B_{s,j}$$

Where $1 \le i \le m$ and $1 \le j \le n$

Rule for Multiplication of two matrixes:

Rule: Multiplication of two matrixes is only possible if first matrix has size m X n and other matrix has size n x r. Where m, n and r are any positive integer Where $1 \le i \le m$ and $1 \le j \le n$

Method for matrix multiplication

This paper discuss Matrix Multiplication in C language, source code and methods with outputs. The source codes of program for Matrix Multiplication in C programming are to be compiled. Running them on Turbo C or available version and other platforms might require a few modifications to the code.

User probably know how to multiply two matrices. Following three fig-1 fig-2 fig-3 below which clearly show how matrix multiplication takes place. The same idea as shown in these pictures has been followed in the same order in the program source codes for Matrix Multiplication in C. (For matrix multiplication, the column of the first matrix should be equal to the row of the second.)

Consider two matrices A and B of order 3×3 as shown below. Let's denote the elements of matrix A by aij and those of matrix B by bij as shown below. These aij and bij are asked as inputs in the form of arrays in C program for Matrix Multiplication.

Matrix A				Matrix B			
a11	a12	a13	Х	b11	b12	b13	
a21	a22	a23		b21	b22	b23	
a31	a32	a33		b31	b32	b33	

Fig-1

Let the resultant matrix upon multiplication of A and B be X with elements denoted by xij as shown.

Result X				Matrix A				Matrix B			
x11	x12	x13		a11	a12	a13		b11	b12	b13	
x21	x22	x23	=	a21	a22	a23	Х	b21	b22	b23	
x31	x32	x33		a31	a32	a33		b31	b32	b33	

Fig-2

The matrix multiplication takes place as shown below, and this same procedure is is used for multiplication of matrices using C.

```
a11xb11 + a12xb21 + a13xb31 a11xb12 + a12xb22 + a13xb32 a11xb13 + a12xb23 + a13xb33 a21xb11 + a22xb21 + a23xb31 a21xb12 + a22xb22 + a23xb32 a21xb13 + a22xb23 + a23xb33 a31xb11 + a32xb21 + a33xb31 a31xb12 + a32xb22 + a33xb32 a31xb13 + a32xb23 + a33xb33
```

Fig-3

Solving the procedure manually would require nine separate calculations to obtain each element of the final matrix X. These nine separate calculations have been done using very few lines of code involving loops in this C program for Matrix Multiplication.

Matrix Multiplication simple Algorithm:

- 1. start
- 2. Declare variables and initialize necessary variables
- 3. Enter the element of matrices by row wise using loops
- Check the number of rows and column of first and second matrices
- 5. If number of rows of first matrix is equal to the number of columns of second matrix, go to step 6. Otherwise, print matrix multiplication is not possible and go to step 3.
- 6. Multiply the matrices using nested loops.
- 7. Print the product in matrix form as console output.
- 8. Stop

C language source code:-Multiplication of two matrixes:

```
#include <stdio.h>
#include<math.h>
#include<conio.h>
int main()
{
    int m, n, p, q, c, d, k, sum = 0;
    int first[20][20], second[20][20], multiply[20][20];
    clrscr();
    printf("\nEnter the number of rows and columns of first matrix:\n");
    scanf("%d%d", &m, &n);
```

```
printf("\nEnter the elements of first matrix\n");
  for (c = 0; c < m; c++)
     for (d = 0; d < n; d++)
       scanf("%d", &first[c][d]);
   printf("\nEnter the number of rows and columns of second
matrix:\n");
  scanf("%d%d", &p, &q);
  if (n!=p)
     printf("\nMatrices with entered orders can't be multiplied
with each other.\n");
      printf("\nThe column of first matrix should be equal to
row of second.\n");
  }
  else
        printf("\nEnter the elements of first matrix:\n");
     for (c = 0; c < m; c++)
       for (d = 0; d < n; d++)
          scanf("%d", &first[c][d]);
     printf("\nEnter the elements of second matrix:\n");
     for (c = 0; c < p; c++)
       for (d = 0; d < q; d++)
         scanf("%d", &second[c][d]);
          for (c = 0; c < m; c++)
     {
       for (d = 0; d < q; d++)
       {
         for (k = 0; k < p; k++)
            sum = sum + first[c][k]*second[k][d];
          multiply[c][d] = sum;
          sum = 0;
       }
     }
```

```
\label{eq:printf} \begin{split} & printf("\nThe\ product\ of\ entered\ matrices\ is:\n");\\ & for\ (\ c=0\ ;\ c< m\ ;\ c++\ )\\ & \{\\ & for\ (\ d=0\ ;\ d< q\ ;\ d++\ )\\ & printf("\%d\t",\ multiply[c][d]);\\ & printf("\n"); \qquad \} \qquad \} \end{split} return\ 0;
```

Output of C program for matrix multiplication

The above Matrix Multiplication in C program first asks for the order of the two matrices. If in the entered orders, the column of first matrix is equal to the row of second matrix, the multiplication is possible; otherwise, new values should be entered in the program fig-4.

```
Enter the number of rows and columns of first matrix:
3 3

Enter the number of rows and columns of second matrix:
2 3

Matrices with entered orders can't be multiplied with each other.

The column of first matrix should be equal to row of second.
```

Fig-4

The program then asks for the respective elements of the two matrices and multiplies them using loops as shown in the program. Finally, the resultant matrix obtained upon multiplication is printed. The final output screen is Fig-5:

```
Enter the number of rows and columns of first matrix: 3 3

Enter the number of rows and columns of second matrix: 3 2

Enter the elements of first matrix: 0 1 2 1 2 3 2 2 3 4

Enter the elements of second matrix: 1 -2 -1 0 2 -1

The product of entered matrices is: 3 -2 5 -5 -5 -8
```

Fig-5

REFERENCES

- [1] E Balgruhaswami "Programming in C"
- [2] Y .Kanetkar "Let's C
- [3] Programming with C Schaum's Outlines Series
- [4] C: the Complete Reference Paperback 2000 by Herbert Schildt (Author)
- [5] Programming and Problem Solving Through "C" LanguagePaperback – 2016 by Harsha Priya (Author), R. Ranjeet (Author)
- [6] http://www.cquestions.com/
- [7] http://www.programmingsimplified.com/